This example demonstrates how to use the
breakDown
package for models created with the xgboost
package.
library("breakDown")
library(xgboost)
model_martix_train <- model.matrix(left ~ . - 1, HR_data)
data_train <- xgb.DMatrix(model_martix_train, label = as.numeric(HR_data$left))
param <- list(objective = "reg:linear")
HR_xgb_model <- xgb.train(param, data_train, nrounds = 50)
#> [04:47:28] WARNING: src/objective/regression_obj.cu:213: reg:linear is now deprecated in favor of reg:squarederror.
HR_xgb_model
#> ##### xgb.Booster
#> raw: 205.3 Kb
#> call:
#> xgb.train(params = param, data = data_train, nrounds = 50)
#> params (as set within xgb.train):
#> objective = "reg:linear", validate_parameters = "TRUE"
#> xgb.attributes:
#> niter
#> callbacks:
#> cb.print.evaluation(period = print_every_n)
#> # of features: 19
#> niter: 50
#> nfeatures : 19
Now we are ready to call the broken()
function.
library("breakDown")
nobs <- model_martix_train[1L, , drop = FALSE]
explain_2 <- broken(HR_xgb_model, new_observation = nobs,
data = model_martix_train)
explain_2
#> contribution
#> (Intercept) 1.238
#> + time_spend_company = 3 -0.059
#> + number_project = 2 -0.005
#> + average_montly_hours = 157 -0.030
#> + satisfaction_level = 0.38 0.197
#> + last_evaluation = 0.53 0.651
#> + salarylow = 1 0.006
#> + Work_accident = 0 0.005
#> + salessales = 1 0.002
#> + salesproduct_mng = 0 0.001
#> + salessupport = 0 0.001
#> + salesRandD = 0 0.000
#> + salesIT = 0 0.000
#> + salesaccounting = 0 0.000
#> + promotion_last_5years = 0 0.000
#> + saleshr = 0 0.000
#> + salesmanagement = 0 0.000
#> + salesmarketing = 0 0.000
#> + salarymedium = 0 0.000
#> + salestechnical = 0 -0.004
#> final_prognosis 2.003
#> baseline: 0
And plot it.