Package: bgmm 1.8.6
bgmm: Gaussian Mixture Modeling Algorithms and the Belief-Based Mixture Modeling
Two partially supervised mixture modeling methods: soft-label and belief-based modeling are implemented. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. For detailed introduction see: Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm: Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software <doi:10.18637/jss.v047.i03>.
Authors:
bgmm_1.8.6.tar.gz
bgmm_1.8.6.zip(r-4.5)bgmm_1.8.6.zip(r-4.4)bgmm_1.8.6.zip(r-4.3)
bgmm_1.8.6.tgz(r-4.4-any)bgmm_1.8.6.tgz(r-4.3-any)
bgmm_1.8.6.tar.gz(r-4.5-noble)bgmm_1.8.6.tar.gz(r-4.4-noble)
bgmm_1.8.6.tgz(r-4.4-emscripten)bgmm_1.8.6.tgz(r-4.3-emscripten)
bgmm.pdf |bgmm.html✨
bgmm/json (API)
# Install 'bgmm' in R: |
install.packages('bgmm', repos = c('https://pbiecek.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pbiecek/bgmm/issues
- CellCycleBeliefs - Data for clustering of 384 cell cycle genes into five clusters corresponding to cell cycle phases
- CellCycleCenters - Data for clustering of 384 cell cycle genes into five clusters corresponding to cell cycle phases
- CellCycleClass - Data for clustering of 384 cell cycle genes into five clusters corresponding to cell cycle phases
- CellCycleData - Data for clustering of 384 cell cycle genes into five clusters corresponding to cell cycle phases
- Ste12Beliefs - Ste12 knockout data under pheromone treatment versus wild type; Examples of Ste12 targets; Binding p-values of Ste12 to those targets.
- Ste12Binding - Ste12 knockout data under pheromone treatment versus wild type; Examples of Ste12 targets; Binding p-values of Ste12 to those targets.
- Ste12Data - Ste12 knockout data under pheromone treatment versus wild type; Examples of Ste12 targets; Binding p-values of Ste12 to those targets.
- genotypes - Fluorescence signals corresponding to a given allele for 333 SNPs
- miR124Data - MiRNA transfection data for miR1 and miR124 target genes
- miR1Data - MiRNA transfection data for miR1 and miR124 target genes
- miRNABeliefs - MiRNA transfection data for miR1 and miR124 target genes
- miRNAClass - MiRNA transfection data for miR1 and miR124 target genes
Last updated 1 years agofrom:ff96b72dda. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 13 2024 |
R-4.5-win | OK | Oct 13 2024 |
R-4.5-linux | OK | Oct 13 2024 |
R-4.4-win | OK | Oct 13 2024 |
R-4.4-mac | OK | Oct 13 2024 |
R-4.3-win | OK | Oct 13 2024 |
R-4.3-mac | OK | Oct 13 2024 |
Exports:beliefbeliefListchooseModelschooseOptimalcrossvalDEprobsdeterminant.numericgetDFgetGICgetModelStructureinit.model.paramsinit.model.params.knownsloglikelihood.mModelmapmModelListplot.mModelplot.mModelListplotGICpredict.mModelsemisupervisedsemisupervisedListsimulateDatasoftsoftListsupervisedunsupervisedunsupervisedList
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecombinatcowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr